martes, 19 de noviembre de 2013

CADENA DE MARKOV

CADENA DE MARKOV

Definición
Una cadena de Markov es una sucesión de ensayos similares u observaciones en la cual cada ensayo tiene el mismo número finito de resultados posibles y en donde la probabilidad de cada resultado para un ensayo dado depende sólo del resultado del ensayo inmediatamente precedente y no de cualquier resultado previo.


Propiedad de Markov: Dada una secuencia de variables aleatorias ...... , , , X1 X2 X3, tales que el valor de Xn  es el estado del proceso en el tiempo n. Si la distribución de probabilidad condicional de Xn+1 en estados pasados es una función de Xn  por sí sola, 
entonces: 






TIPOS DE CADENA

Cadenas irreducibles[]

Una cadena de Márkov se dice irreducible si se cumple cualquiera de las siguientes condiciones (equivalentes entre sí):
  1. Desde cualquier estado de E se puede acceder a cualquier otro.
  2. Todos los estados se comunican entre sí.
  3. C(x)=E para algún x∈E.
  4. C(x)=E para todo x∈E.
  5. El único conjunto cerrado es el total.
La cadena de Ehrenfest o la caminata aleatoria sin barreras absorbentes son ejemplos de cadenas de Márkov irreducibles.

Cadenas positivo-recurrentes[

Una cadena de Márkov se dice positivo-recurrente si todos sus estados son positivo-recurrentes. Si la cadena es además irreducible es posible demostrar que existe un único vector de probabilidad invariante y está dado por:
\pi_x = 1/\mu_x \,

Cadenas regulares[

Una cadena de Márkov se dice regular (también primitiva o ergódica) si existe alguna potencia positiva de la matriz de transición cuyas entradas sean todas estrictamente mayores que cero.
Cuando el espacio de estados E es finito, si P denota la matriz de transición de la cadena se tiene que:
\lim_{n \to  \mathcal{1} \,}P^n= W
donde W es una matriz con todos sus renglones iguales a un mismo vector de probabilidad w, que resulta ser el vector de probabilidad invariante de la cadena. En el caso de cadenas regulares, éste vector invariante es único.

Cadenas absorbentes[

Una cadena de Márkov con espacio de estados finito se dice absorbente si se cumplen las dos condiciones siguientes:
  1. La cadena tiene al menos un estado absorbente.
  2. De cualquier estado no absorbente se accede a algún estado absorbente.
Si denotamos como A al conjunto de todos los estados absorbentes y a su complemento como D, tenemos los siguientes resultados:
  • Su matriz de transición siempre se puede llevar a una de la forma
P =
   \begin{pmatrix}
      Q & R \\
      0 & I
   \end{pmatrix}
donde la submatriz Q corresponde a los estados del conjunto D, I es la matriz identidad, 0 es la matriz nula y R alguna submatriz.
  • P_x(T_A < \mathcal{1} \,) = 1 , esto es, no importa en donde se encuentre la cadena, eventualmente terminará en un estado absorbente.

Cadenas de Márkov en tiempo continuo[]

Si en lugar de considerar una secuencia discreta X1, X2,..., Xi,.. con i indexado en el conjunto \mathbb{N}\;\! de números naturales, se consideran las variables aleatorias Xt con t que varía en un intervalo continuo del conjunto \mathbb{R}\;\! de números reales, tendremos una cadena en tiempo continuo. Para este tipo de cadenas en tiempo continuo la propiedad de Márkov se expresa de la siguiente manera:

 P(X(t_{n+1})=x_{n+1} | X(t_n)=x_n, \ldots, X(t_1)=x_1) = P(X(t_{n+1})=x_{n+1}|X(t_n)=x_n) 

tal que  t_{n+1} > t_n > t_{n-1} > \dots > t_1





Para una cadena de Márkov continua con un número finito de estados puede definirse una matriz estocástica dada por:

\mathbf{P}(t_1,t_2)=[p_{ij}(t_1,t_2)]_{i,j=1,\dots,N}, \qquad
p_{ij}(t_1,t_2) = P[X(t_2)=j|X(t_1)=i],\ 0\ge t_1< t_2




La cadena se denomina homogénea si \mathbf{P}(t_1,t_2)=\mathbf{P}(t_2-t_1). Para una cadena de Márkov en tiempo continuo homogénea y con un número finito de estados puede definirse el llamado generador infinitesimal como:2

\mathbf{Q}= \lim_{h\to 0^+} \frac{\mathbf{P}(h)-\mathbf{I}}{h}
Y puede demostrarse que la matriz estocástica viene dada por:

\mathbf{P}(t)= e^{\mathbf{Q}t} = \sum_{n=0}^\infty \frac{\mathbf{Q}^n t^n}{n!}

1 comentario:

  1. Durante el semestre su blogger fue uno de los mas completos, claros y cumplidos al momento de subir la información. Buen trabajo compañera Vanesa.

    ResponderEliminar