Definición
Una cadena de Markov es una sucesión de ensayos similares u observaciones en la cual cada ensayo tiene el mismo número finito de resultados posibles y en donde la probabilidad de cada resultado para un ensayo dado depende sólo del resultado del ensayo inmediatamente precedente y no de cualquier resultado previo.
Propiedad de Markov: Dada una secuencia de variables aleatorias ...... , , , X1 X2 X3, tales que el valor de Xn es el estado del proceso en el tiempo n. Si la distribución de probabilidad condicional de Xn+1 en estados pasados es una función de Xn por sí sola,
entonces:
TIPOS DE CADENA
Cadenas irreducibles
Una cadena de Márkov se dice irreducible si se cumple cualquiera de las siguientes condiciones (equivalentes entre sí):
- Desde cualquier estado de E se puede acceder a cualquier otro.
- Todos los estados se comunican entre sí.
- C(x)=E para algún x∈E.
- C(x)=E para todo x∈E.
- El único conjunto cerrado es el total.
La cadena de Ehrenfest o la caminata aleatoria sin barreras absorbentes son ejemplos de cadenas de Márkov irreducibles.
Cadenas positivo-recurrentes
Una cadena de Márkov se dice positivo-recurrente si todos sus estados son positivo-recurrentes. Si la cadena es además irreducible es posible demostrar que existe un único vector de probabilidad invariante y está dado por:
Cadenas regulares
Una cadena de Márkov se dice regular (también primitiva o ergódica) si existe alguna potencia positiva de la matriz de transición cuyas entradas sean todas estrictamente mayores que cero.
Cuando el espacio de estados E es finito, si P denota la matriz de transición de la cadena se tiene que:
donde W es una matriz con todos sus renglones iguales a un mismo vector de probabilidad w, que resulta ser el vector de probabilidad invariante de la cadena. En el caso de cadenas regulares, éste vector invariante es único.
Cadenas absorbentes
Una cadena de Márkov con espacio de estados finito se dice absorbente si se cumplen las dos condiciones siguientes:
- La cadena tiene al menos un estado absorbente.
- De cualquier estado no absorbente se accede a algún estado absorbente.
Si denotamos como A al conjunto de todos los estados absorbentes y a su complemento como D, tenemos los siguientes resultados:
- Su matriz de transición siempre se puede llevar a una de la forma
donde la submatriz Q corresponde a los estados del conjunto D, I es la matriz identidad, 0 es la matriz nula y R alguna submatriz.
- , esto es, no importa en donde se encuentre la cadena, eventualmente terminará en un estado absorbente.
Cadenas de Márkov en tiempo continuo
Si en lugar de considerar una secuencia discreta X1, X2,..., Xi,.. con i indexado en el conjunto de números naturales, se consideran las variables aleatorias Xt con t que varía en un intervalo continuo del conjunto de números reales, tendremos una cadena en tiempo continuo. Para este tipo de cadenas en tiempo continuo la propiedad de Márkov se expresa de la siguiente manera:
tal que
Para una cadena de Márkov continua con un número finito de estados puede definirse una matriz estocástica dada por:
La cadena se denomina homogénea si . Para una cadena de Márkov en tiempo continuo homogénea y con un número finito de estados puede definirse el llamado generador infinitesimal como:2
Y puede demostrarse que la matriz estocástica viene dada por:
Durante el semestre su blogger fue uno de los mas completos, claros y cumplidos al momento de subir la información. Buen trabajo compañera Vanesa.
ResponderEliminar